تعداد مواد HTS که تا به حال شناخته شدهاند چندان زیاد نیست و از این تعداد تنها دو گروه به لحاظ اقتصادی مورد استفاده قرار گرفتهاند. این دو گروه شامل BSCCO (یا هادی نسل اول) و YBCO (یا هادی نسل دوم) میباشد که نام آنها نمایانگر ترکیب شیمیایی آنها است. هر دو گروه از نوعی سرامیک ساخته میشوند که به دلیل شکنندگی، مانند هادیهای فلزی قابلیت شکل بندی خوبی ندارند. علاوه بر این ترتیب قرارگیری کریستالهای موجود در سرامیک، باید در راستای طول هادی باشد و وجود هر گونه آلودگی در آن باعث افزایش مقاومت میشود. بنابراین ساخت یک کابل ابررسانا بلند چندان ساده نیست.در شکل زیر دو گروه اصلی این سیمها نشان داده شده است. هر یک از این سیمها، چگالی توان بالا و مقاومت الکتریکی کمی دارند، اما تفاوت آنها در نوع ماده ابررسانا، تکنولوژی ساخت و کاربرد آنها است.
در نمای نزدیک شکل سمت چپ ساختار داخلی سیم HTS ، که ترکیبی از چند رشته (نسل اول یا 1G) است نمایش داده شده است. این سیم محصول شرکت AMSC است و حدود 20 کشور در سطح دنیا در کاربردهای مختلف از آن استفاده میکنند. شکل سمت راست نیز ساختار نسل دوم (2G) سیمهای ابررسانای شرکت AMSC که دارای 344 یا 348 هادی ابررسانا است، نشان میدهد. این محصول از سال 2005 به بازار معرفی شد و دارای 100 متر طول و عرض 4 سانتیمتر مطابق شکل زیر میباشد.
ادامه مطلب ...
کشف متحول کننده ابررساناهای دما بالا در سال 1986 منجر به تحول و تولید نوع جدیدی از کابلها در سیستمهای قدرت شد. در ایالات متحده، اروپا و ژاپن رقابت سختی بر روی تجارت تولید آینده کابلهای ابررسانائی وجود دارد. قابلیت هدایت جریان برق در کابلهای HTS بالغ بر150 بار بیشتر از هادیهای آلومینیومی و مسی متداول میباشد و بنابراین اتلاف انرژی در اثر مقاومت که در حدود 8 تا 10 درصد کل انرژی الکتریکی تولیدی و 2/3 تا 4 درصد کل انرژی جهان است، تقریبا به صفر میرسد. تولید هر گیگاوات ساعت انرژی 160 تن اکسید کربن و یک تن اکسید نیتروژن آلودگی ایجاد میکند که صرفه جویی ناشی از استفاده از تجهیزات ابررسانا را از نظر زیست محیطی توجیه میسازد. اندازه، وزن و مقاومت این نوع کابلها از کابلهای معمولی بهتر بوده و امروزه تولیدکنندگان تجهیزات الکتریکی در سراسر دنیا سعی دارند با استفاده از تکنولوژی HTS باعث کاهش هزینهها و افزایش ظرفیت و قابلیت اطمینان سیستمهای قدرت شوند.
با توجه به خصوصیتهای الکتریکی ومغناطیسی ابررساناها، تجهیزات مختلفی ساخته شده و پروژههای متعدد تحقیقاتی نیز برای توسعه کاربرد آنها در زمینههای گوناگون در دست انجام است. در این فصل به مهمترین کاربردهای ابررسانا پرداخته میشود. شکل زیر محدوده کاری کاربردهای ابررساناها را با توجه به ملزومات جریانی، دمایی و میدانی نشان میدهد.
ادامه مطلب ...
مشخصات ابررسانایی هنگامی ظاهر می شود که دمای آن کمتر از دمای بحرانی TC شود. مقدار این دما در مواد مختلف متفاوت است. برای مثال این دما در جیوه جامد 2/4 کلوین، در دی بوراید منیزیم MgB2) 39) کلوین و در ابررسانای YBa2Cu3O7، که به اختصار YBCO نوشته می شود، 92 کلوین است. تئوری جفت الکترون در اثر تبادل فونون ها که در ابررساناهای معمولی صادق است، دیگر در ابررساناهای با TC بسیار بالا صدق نمی کند.
با شروع خاصیت ابررسانایی تغییرات ناگهانی در مشخصه های فیزیکی ماده به وجود می آید که حاکی از تغییر فاز در ماده است. برای مثال ظرفیت گرمایی ماده در رژیم عادی متناسب با دما است و در دمای بحرانی دچار ناپیوستگی شده و با کاهش دما تغییرات آن نمایی خواهد بود که نشانه وجود اختلاف انرژی است.
در یک هادی معمولی، جریان به صورت حرکت الکترون ها در شبکه یونی هادی تعریف می شود. الکترون ها در طول این حرکت به یون های موجود در شبکه یونی برخورد کرده و مقداری از انرژی خود را به یون ها می دهند. این انرژی تلف شده، در شبکه یونی تبدیل به گرما می شود. این پدیده، مقاومت الکتریکی نامیده می شود[1].
اما در ابررساناها، وضعیت متفاوت است. در یک ابررسانا جریان الکتریکی ناشی از جفت های الکترونی (Cooper Pairs) است. این جفت الکترون ها در اثر نیروی جاذبه ی بین الکترون ها، که ناشی از تبادل فونون ها بین آنها است، به وجود می آیند. وجود اختلاف سطح انرژی (ΔΕ) در طیف انرژی این جفت الکترون ها حاکی از آن است که برای تحریک کردن آنها حداقل به انرژی ΔΕ نیاز است. حال اگر انرژی گرمایی شبکه یونی KT (که در آن T دما و K ثابت بولتزمان است) کمتر از ΔΕ باشد، آنگاه جفت های الکترونی دچار پراکندگی و تلفات انرژی نمی شوند و در نتیجه مقاومت الکتریکی صفر خواهد بود.
در نزدیکی دمای بحرانی، مواد HTS در برابر عبور جریان الکتریکی و به واسطه وجود میدان مغناطیسی ناشی از جریان الکتریکی، از خود مقاومت نشان می دهند. دلیل این امر وجود جریانات گردابی است که باعث اتلاف انرژی جفت الکترون ها می شود. در صورتی که دما به اندازه ی کافی کاهش یابد، این گرداب ها منجمد شده و مقاومت کاملاً صفر می شود.
[1] A P Malozemoff, et al, “Progress in HTS Coated Conductors and Their Applications”, American Superconductor Corp. , March 2007.